

U.S. DEPARTMENT OF ENERGY
OFFICE OF FOSSIL ENERGY
NATIONAL ENERGY TECHNOLOGY LABORATORY

CONTACT POINTS

Scott M. Klara

Sequestration Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4864 scott.klara@netl.doe.gov

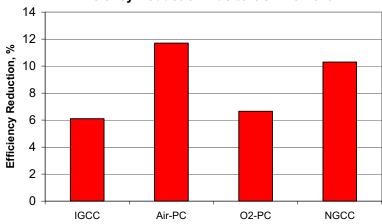
Timothy Fout

Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1341 timothy.fout@netl.doe.gov

Andrew Seltzer

Foster Wheeler Development Corporation 12 Peachtree Hill Road Livingston, NJ 07039 973-535-2542 andrew_seltzer@fwc.com

CONCEPTUAL DESIGN OF OXYGEN-BASED PC BOILER


Background

Because of growing concern that a link exists between global climatic change and emission of greenhouse gases, such as CO_2 , it is prudent to develop new coal combustion technologies to meet future emissions standards, should it become necessary to limit CO_2 emissions to the atmosphere. New technology is needed to ensure that the U.S. can continue to generate power from its abundant domestic coal resources. This project will design an optimized combustion furnace to produce a low-cost, high-efficiency power plant that supports the U.S. Department of Energy's (DOE) goal of developing advanced combustion systems that have the potential to control CO_2 through an integrated power system that produces a concentrated CO_2 stream for subsequent use or sequestration. Specifically, this work will evaluate the technical viability and economic competitiveness of an oxygen-enriched, pulverized coal (PC) fired boiler system with CO_2 sequestration. When oxygen is used in place of air as the combustion medium, the flue gas has a high concentration of CO_2 , making recovery of CO_2 for sequestration much more economic.

Primary Project Goal

The primary goal of this project is to develop a conceptual PC-fired power plant, using oxygen as the combustion medium to facilitate the capture of CO₂ for subsequent sequestration.

CUSTOMER SERVICE

1-800-553-7681

WEBSITE

www.netl.doe.gov

PARTNERS

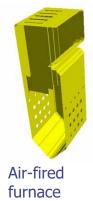
Foster Wheeler Development Corporation

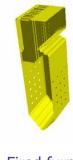
COST

Total Project Value \$406,482

DOE/Non-DOE Share \$325,186/\$81,296

Objectives


- Conduct a literature review to evaluate previous work in this area.
- Develop process modeling simulations for a conceptual design for an oxygenenriched, PC-fired boiler with CO₂ capture.
- Develop a conceptual power plant design.
- Estimate costs for this conceptual power plant.
- Predict power plant performance and emissions and compare the overall cost of electricity of the conceptual power plant to a conventional PC-fired power plant (460 MWe subcritical, natural circulation boiler firing high-volatile bituminous coal to produce 2,400 psig steam at 1,050°F and reheat steam at 1,050°F).


Accomplishments

The entire cycle has been modeled in Aspen-Plus, including mills, air heater, furnace, heat recovery banks, feed water heaters, and steam turbines. Parametric runs have been made to evaluate the effect of operating variables on furnace performance. These studies have led to several conclusions. A higher flame temperature results in a more compact furnace and less gas recycle (limited by maximum furnace wall temperature) and to a higher cycle efficiency due to greater boiler efficiency. Estimates indicate that the parasitic power requirement for CO_2 capture is considerably lower than for a conventional plant and is comparable to that for an integrated gasification combined cycle (IGCC) system. Similarly, efficiency loss due to CO_2 capture is lower than for a conventional plant and comparable to an IGCC system.

Benefits

This project is evaluating a potential new power generating technology which could have the same efficiency and CO_2 sequestration potential as IGCC in a simpler facility. A substantially reduced furnace size leads to cost benefits, and a simple plant design means high reliability. The new plant uses proven steam plant technology. New air separation techniques could significantly improve economics.

O₂-Fired furnace (50% smaller)

Spatial comparison of an air-fired furnace versus an oxygen-fired furnace.